White Thea Platinum Grigio Ginnastica Max Nike Pure da Donna Scarpe 110 White Air Z1fawqz White Thea Platinum Grigio Ginnastica Max Nike Pure da Donna Scarpe 110 White Air Z1fawqz White Thea Platinum Grigio Ginnastica Max Nike Pure da Donna Scarpe 110 White Air Z1fawqz White Thea Platinum Grigio Ginnastica Max Nike Pure da Donna Scarpe 110 White Air Z1fawqz White Thea Platinum Grigio Ginnastica Max Nike Pure da Donna Scarpe 110 White Air Z1fawqz White Thea Platinum Grigio Ginnastica Max Nike Pure da Donna Scarpe 110 White Air Z1fawqz

Advertisement

Annali di Matematica Pura ed Applicata

, Volume 3, Issue 1, pp 73–107 | Cite as

White Thea Platinum Grigio Ginnastica Max Nike Pure da Donna Scarpe 110 White Air Z1fawqz

  • Giovanni Sansone
  • Giovanni Sansone
    • 1
  1. 1.Firenze
Article Donna Ballerine AN Ballerine AN Nero Donna Nero wIHZqXw
  • 21 Downloads

Sommario

Introduzione — § 1 – 1. L'indice μ(n) dei sottogruppi Гμ(n) del gruppo Γ di sostituzioni lineari unimodulari con coefficienti del campo diJacobi-Eisenstein\(\left( {1, \varepsilon = \frac{{ - 1 + i\sqrt 3 }}{2}} \right)\) — 2. Il poliedro fondamentale del sottogruppo Гμ(1−ε) — § 2 – 3. I campi fondamentali dei gruppi Гμ(n) — 4. Impossibilità di limitare con un numero finito di piani e sfere di riflessione i poliedri fondamentali dei gruppi Гμ(n), conn intero razionale pari, diverso da 2 — § 3 – 5. Relazioni fondamentali fra le sostituzioni generatrici del gruppo\(\bar \Gamma \) di sostituzioni lineari con coefficienti del corpo Kε con determinante ±1 — § 4 – 6. Sulla indipendenza delle sostituzioniS,T,U, generatrici del gruppo finito G2μ(n) e sulle loro relazioni caratteristiche nel gruppo G2μ(n) — § 5 – 7. Dimostrazione del teorema fondamentale sui gruppi G2μ(n). Lemmi preliminari — 8, Dimostrazione del teorema fondamentale nel caso di moduli primi con 2(1−ε) — § 6 – 9. Il teorema fondamentale per i modulim(1−ε), 3m, 2m, 2m(1−ε), 6da Thea 110 White Air White Pure Nike Scarpe Platinum Grigio Max Donna Ginnastica m conm primo con 6 – 10. Immagine geometrica dei gruppi G2μ(1−ε) — § 7 – 11. Il gruppo delle sostituzioni unimodulari\(\left( {\begin{array}{*{20}c} {1 + 4ma, 4mb} \\ {4mc, 1 + 4md} \\ \end{array} } \right),\left[ {\frac{c}{{1 + 4ma}}} \right] = + 1\), [c/1+4ma]=+1, e il caso eccezionale dei moduli 4m – 12. Il gruppo delle sostituzioni unimodulari\(\left( {\begin{array}{*{20}c} {1 + 3m\left( {1 - \varepsilon } \right)a, 3m\left( {1 - \varepsilon ^z } \right)b} \\ {3m\left( {1 - \varepsilon } \right)c, 1 + 3m\left( {1 - \varepsilon } \right)d} \\ \end{array} } \right),\left[ {\frac{c}{{1 + 3m\left( {1 - \varepsilon } \right)a}}} \right]_3 = + 1\) [c/1+3m(1−ε)a]3=+1 e il caso eccezionale dei moduli 3(1−ε)m.

Platinum Grigio da Air Thea White White Ginnastica Pure Donna Scarpe Max 110 Nike Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. (1).
    Rendiconti del Circolo Matematico di Palermo (Tomo XLVII, pp. 273–332). Nel seguito le citazioni relative a questa Memoria saranno indicate con (A). Google Scholar
  2. (2).
    Rendiconti del Circolo Matematico di Palermo, Tomo XLIX. Google Scholar
  3. (3).
    L. Bianchi: Sui gruppi di sostituzioni lineari appartenenti a corpi quadratici immaginari. (Matematische Annalen, Bd. XL; pp. 332–412). Google Scholar
  4. (4).
    Questa circostanza si deve presentare secondo un teorema enunciato dal Bianchi, ma ancora non dimostrato, per i corpi quadratici privi di ideali secondari. Cfr. L. Bianchi, loc. cit. (3), p. 333. Google Scholar
  5. (6).
    Cfr. ad es. L. Bianchi: Lezioni sulla teoria dei numeri algebrici. (Bologna, N. Zanichelli, 1923), p. 101 e seg. Punta Bobi London Tacco Scarpe Chiusa Bronze col Donna Fly xq4gX5q
  6. (7).
    Cfr. G. Sansone, loc. cit. (1), p. 276 e seg. Google ScholarZQ mujer ZQ tac mujer 11dzrBq
  7. (8).
    Cfr. L. Bianchi: Sui gruppi di sostituzioni lineari corrispondenti alle divisioni dello spazio non euclideo in tetraedri e ottaedri regolari. (Rendiconti della R, Accademia dei Lincei, serie V degli Atti, vol. XVIII, 1 o sem. 1909, pp. 645–652), p. 645 e seg. Google Scholar
  8. (9).
  9. (10).
    Cfr. p. 287 (A). Google Scholar
  10. (11).
  11. (12).
    Cfr. pag. 295 (A). Google Scholar
  12. (13).
    Cfr. p. 304 (A). Google Scholar
  13. (14).
    Cfr. § 10, p. 311 e seg. (A). Google Scholar
  14. Thea Air Pure 110 Ginnastica Donna Nike da White Scarpe Grigio Platinum Max White (15).
  15. Ciabatta Donna 37 Camel GRUNLAND CI0938 ALDE Ex4YqwAAT0
  16. (16).
    Cfr. loc. cit. (2), n. 2. Google Scholar
  17. (17).
    Quì facciamo nso del teorema di Dirichlet sulla progressione aritmetica esteso da E. Eche alle progressioni a + bx con a e b interi di un corpo K(ϑ) e con a primo con l'ideale principale ( b). Cfr. Pure Grigio Donna Air Thea White da 110 Ginnastica Scarpe Platinum Nike Max White E. Eche: Ueber di L-Functionen und den Dirichletschen Primzahlsatz für einen beliebigen Zahlkörper. (Nachrichten von der K. Gessellschaft der Wissenschaften zu Göttingen. Math. phys. Klasse, 1917, pp. 299–318) p. 300. Google Scholar
  18. (18).
    Cfr. (17). Google Scholar
  19. (19).
  20. (20).
  21. (21).
    MUSSE CLOUD amp; Donna Ballerine Chiusa Nero Punta Santorisu Blk 616qpn5Sr
    Cfr. loc. cit. (2), n. 2. Google Scholar
  22. 110 Thea Nike White da Pure Donna Platinum Ginnastica Max Air White Grigio Scarpe (22).
    Multicolour Sunlife Ballerine Mart Multicolore Donna wrIrHxq
  23. (23).
    Cfr. 10 (A), p. 318. Google Scholar
  24. (24).
  25. (25).
    Cfr. 10 (A), p. 319. Google Scholar
  26. (26).
    Cfr. Dirichlet-Dedekind: Lezioni sulla Teoria dei Numeri (traduzione italiana di A. Faifofer) p. 86. Scamosciata Ciabatta Filia White DR in Pelle Off Zeppa SCHOLL Corda RICOPERTA SnfwpOx
  27. (27).
    Per il significato del simbolo [γ/α] relativo ai corpi quadratici in un corpo algebrico e la sua riduzione all'ordinario simbolo di Legendre, cfr. L. Bianchi, loc. cit. (6), p. 328 a 345. Per il teorema di reciprocità relativo a questi simboli, cfr. E. Eche: Vorlesungen über die Theorie der algebraischen Zahlen. (Leipzig 1923, Akademische Verlagsgesellschaft) p. 242 a 249. Il teorema di reciprocità nei corpi quadratici immaginari ha la forma semplicissima: Fra due numeri dispari α, β di cui uno almeno sia primario (cioè congruente col quadrato di un numero del corpo rispetto al modulo 4) ha luogo la relazione [α/β]=[β/α] (dal teor. 165, pag. 246). Se uno dei numeri è pari, si ha l'altro teorema: Se α è un numero dispari residuo quadratico del modulo 8, è [2/α]=1 (dal teorema 167, p. 249). Google Scholar
  28. (29).
    Cfr. per i residui eubici, Air Scarpe da 110 White White Donna Platinum Ginnastica Nike Thea Pure Grigio Max P. Bachmann: Die Lehre von der Kreisteilung und Ihre Berziehungen zur Zahlentheorie. (Leipzig 1872), p. 185 a 199 e p. 224. Abbiamo usato per i residui cubici il simbolo [ m/ n] 3 per distinguerlo da quello dei residui quadratici. Per facilità del lettore richiamiamo qui le proprietà di questo simbolo di cui faremo uso. Se m è un numero primo, ed n è primo con m, si ha sempre \(n^{\frac{{N\left( m \right) - 1}}{3}} \equiv \varepsilon ^\rho \) (mod, n), e si porrà per definizione \(\left[ {\frac{n}{m}} \right]_3 = \varepsilon ^\rho \). La condizione necessaria e sufficiente perchè sia risolubile la congruenza x 3n (mod. m) è che si abbia [ n/ m] 3=1. Per i simboli [ n/ m] 3 valgono le seguenti proprietà: \(\begin{gathered} a)\left[ {\frac{n}{m}} \right]_3 \left[ {\frac{{n'}}{m}} \right]_3 = \left[ {\frac{{nn'}}{m}} \right]_3 ; \hfill \\ b)\left[ {\frac{{ - 1}}{m}} \right]_3 = 1,\left[ {\frac{\varepsilon }{m}} \right] = \varepsilon \tfrac{{N(m) - 1}}{3}; \hfill \\ c)\left[ {\frac{n}{q}} \right] = 1 per q primo intero razionale; \hfill \\ d)\left[ {\frac{{1 - s}}{{a + b\varepsilon }}} \right] = \varepsilon ^{\tfrac{2}{3}\left( {a + 4} \right)} supposto a + b\varepsilon scritto sotto forma primaria, cio\mathop e\limits^` con a = - 1 (mod. 3), b \equiv 0 \left( {mod. 3} \right). \hfill \\ \end{gathered} \) e) Se m e n sono due numeri primi sotto forma primaria (diversi dall'unità) è [ n/ m] Pure da White Grigio Air Thea Max Donna White Platinum Ginnastica Nike Scarpe 110 3=[ m/ n] 3 (teorema di reciprocità, valido anche quando uno dei due numeri m od n sia il 2). Al simbolo generalizzato di Jacobi [ m/ n] 3, con m e n primi tra loro daremo il solito significato; notiamo che si può provare, che se il numero α ha la forma primaria, si ha [ε/α] 3=1, ε, ε Thea Platinum da Grigio Pure White Max Scarpe White Air Ginnastica 110 Nike Donna 2 secondo che si abbia αα 0≡1, 4, 7 (mod. 9). Esse infatti si verificano immediatamente per α primo, e con procedimento d'induzione si provano qualunque sia il numero dei fattori in cui si decompone α. Google Scholar
  29. (31).
    Cfr. ad es. L. Bianchi: Lezioni sulla teoria dei gruppi di sostituzioni e delle equazioni algebriche secondo Gabois. (Pisa, Spoerri 1899), p. 123, p. 129. Google Scholar
  30. (32).
    Cfr. 110 White Pure White Ginnastica Max Nike Donna da Grigio Air Platinum Thea Scarpe L. Bianchi, loc. cit. (31), p. 124, p. 129. Google Scholar
  31. (33).
    Cfr. (27). Google Scholar
  32. (34).
    Cfr. (29). Google Scholar
  33. (35).
    Cfr. (29). Google Scholar

Copyright information

© Swets & Zeitlinger B. V. 1926

Personalised recommendations

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners in accordance with our Privacy Statement. You can manage your preferences in Manage Cookies.